Extra- and intra-cellular ice formation in Stage I and II
Xenopus laevis oocytes

James F. Guenther a, Shinsuke Seki a,b, F.W. Kleinhans a,1, Keisuke Edashige a,b,
Daniel M. Roberts c, Peter Mazur a,*

a Fundamental and Applied Cryobiology Group, Department of Biochemistry and Cellular and Molecular Biology,
The University of Tennessee, Knoxville, TN 37932-2575, USA
b Laboratory of Animal Science, College of Agriculture, Kochi University, Kochi, Japan
c Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37932-0840, USA

Received 12 December 2005; accepted 10 February 2006
Available online 4 April 2006

Abstract

We are currently investigating factors that influence intracellular ice formation (IIF) in mouse oocytes and oocytes of the frog Xenopus. A major reason for choosing these two species is that while their eggs normally do not possess aquaporin channels in their plasma membranes, these channels can be made to express. We wish to see whether IIF is affected by the presence of these channels. The present Xenopus study deals with control eggs not expressing aquaporins. The main factor studied has been the effect of a cryoprotective agent [ethylene glycol (EG) or glycerol] and its concentration. The general procedure was to (a) cool the oocytes on a cryostage to slightly below the temperatures at which extracellular ice formation occurs, (b) warm them to just below the melting point, and (c) then re-cool them to −50 °C at 10 °C/min. In the majority of cases, IIF occurs well into step (c), but a sizeable minority undergo IIF in steps (a) or (b). The former group we refer to as low-temperature flashers; the latter as high-temperature flashers. IIF is manifested as abrupt blackening of the egg, which we refer to as “flushing.” Observations on the Linkam cryostage are restricted to Stage I and II oocytes, which have diameters of 200–300 μm. In the absence of a cryoprotective agent, that is in frog Ringers, the mean flash temperature for the low-temperature freezers is −11.4 °C, although a sizeable percentage flash at temperatures much closer to that of the EIF (−3.9 °C). When EG is present, the flash temperature for the low-temperatures freezers drops significantly to −−20 °C for EG concentrations ranging from 0.5 to 1.5 M. The presence of 1.5 M glycerol also substantially reduces the IIF temperature of the low-temperature freezers; namely, to −29 °C, but 0.5 and 1 M glycerol exert little or no effect. The IIF temperatures observed using the Linkam cryostage agree well with those estimated by calorimetry [F.W. Kleinhans, J.F. Guenther, D.M. Roberts, P. Mazur, Analysis of intracellular ice nucleation in Xenopus oocytes by differential scanning calorimetry, Cryobiology 52 (2006) 128–138]. The IIF temperatures in Xenopus are substantially higher than those observed in mouse oocytes [P. Mazur, S. Seki, I.L. Pinn, F.W. Kleinhans, K. Edashige,

References

Research supported by NIH Grant R01-RR18470 (P. Mazur, PI).
Corresponding author. Fax: +1 865 974 8027.
E-mail address: pmazur@utk.edu (P. Mazur).
Present address: Department of Physics, Indiana University-Purdue University at Indianapolis, IN 46202, USA.

0011-2240/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
Extra- and intracellular ice formation in mouse oocytes, Cryobiology 51 (2005) 29–53. Perhaps that is a reflection of their much larger size. © 2006 Elsevier Inc. All rights reserved.

Keywords: Oocytes; Xenopus laevis; Freezing; Intracellular and extracellular; Plasma membrane

The most important single factor determining the success of cryopreservation is whether or not a cell undergoes intracellular ice formation (IIF) during freezing. In "classical" freezing, IIF is avoided by cooling cells sufficiently slowly so that osmotic dehydration results in their water remaining in near chemical potential equilibrium with the outside solution and ice. The faster the cooling, the more the cell water volume departs from equilibrium, and the more it departs from equilibrium, the more it is supercooled.

A supercooled cell will eventually freeze intracellularly at some sub-zero ice nucleation temperature or zone. Consequently, whether or not a cell freezes internally depends not only on the cooling rate, but also on the boundary temperature of the nucleation zone. The two factors interact. The higher the nucleation temperature, the lower the cooling rate has to be to ensure that the cell is sufficiently dehydrated by the time it reaches that temperature. If the nucleation temperature is too high, it would become impossible to achieve sufficient cell dehydration to avoid IIF no matter how low the cooling rate. In other words, it would become impossible to cryopreserve by classical slow freezing. Such appears to be the case in starfish oocytes [8] and zebrafish embryos [3].

Because of its central importance to cryobiology, we have initiated an in-depth study of factors that influence the temperature at which IIF occurs. The model cells chosen for study are mouse oocytes and oocytes of the frog Xenopus laevis. Information on the former was published recently [12,14]. The present report describes cryomicroscope studies on Stage I and II Xenopus oocytes. It complements another recent paper by Kleinhans et al. [7] reporting the results of intracellular freezing in Stage I to VI Xenopus oocytes by differential scanning calorimetry (DSC). An important mechanistic reason for selecting the oocytes of these two species is that while their plasma membranes do not normally possess aquaporin channels, it is possible to express aquaporin water channels in both. This allows a test of the hypothesis that one route of IIF may be the growth of external ice crystals through existing pores in the plasma membrane [10]. Before pursuing Xenopus as a model for aquaporin effects on IIF, the properties of wild type, non-expressing oocytes needs to be established. The current paper reports our cryomicroscope findings on these non-expressing oocytes.

Xenopus oocyte development is divided into six stages (I–VI). The maturation is accompanied by a six-fold increase in diameter from ~200 to 1200 μm and a conversion from transparency to opacity. For reasons of size and opacity, only Stage I and II (~300 μm) oocytes are amenable to cryomicroscopic observations. That limitation does not apply to DSC studies.

Methods

As just mentioned, a central aim of our research is to compare the ice nucleation behavior of control oocytes, which lack aquaporin channels, with that of oocytes in which these channels have been expressed.

Obtaining Xenopus Stage I and II oocytes

Mature female oocyte positive X. laevis frogs were obtained from Xenopus Express (Plant city, FL) and housed in tanks in The University of Tennessee, Knoxville animal facility. Oocytes were harvested as previously described [2] by surgical removal of oocyte sacks. Oocyte sacks were then defolliculated by treatment with 2 mg/ml collagenase type IA (Sigma No. C-9891) in filtered Ringers solution without calcium (96 mM NaCl, 2 mM KCl, 5 mM MgCl₂, and 5 mM Hepes–NaOH, pH 7.6) for 2–3 h at room temperature. Oocytes were periodically visually inspected during collagenase treatment to monitor follicular cell removal and to prevent over digestion [19]. Collagenase treatment was stopped by removal of collagenase by washing oocytes in filtered Ringers solution (96 mM NaCl, 2 mM KCl, 5 mM MgCl₂, 0.6 mM CaCl₂, 5 mM Hepes–NaOH, pH 7.6, 100 μg/ml penicillin–streptomycin, and 5% [v/v] horse sera) until the solution turned clear (usually 4–5 washes, 40 ml each). Oocyte stages were determined by size and appearance according to Hausen and Riebsell [4] and separated into sterile 96-well microtiter plates (Falcon
No. 351177). Oocytes were cultured in filtered Ringers solution between 1 and 2 days at 16 °C before the experimental treatment.

Experimental media

Prior to freezing, the majority of oocytes were exposed at room temperature for 15–35 min in approximately 10 ml of Ringers solution supplemented with various concentrations of either ethylene glycol or glycerol (0, 0.5, 1.0 or 1.5 M). A sizeable number were exposed for shorter times (1–10 min), and a few for longer times (60 min). The composition of experimental media solutions is given in Table 1. In addition, the media used for freezing experiments also contained 10 mg/L of a commercial freeze-dried preparation of Pseudomonas syringae (Snowmax) to induce the formation of extra-cellular ice (EI) at higher temperatures than would otherwise be the case.

Preparing the Linkam sample

The sample container for the Linkam cryostage used in our experiments (next section) consists of a shallow quartz dish 14 mm inner diameter and 2.56 mm deep. The bottom is 40 μm thick. A 250 μm thick washer measuring 12.7 mm OD and 7.9 mm ID was punched from plastic shim stock with Ted Pella disc punches #54743 and 54740, and placed in the quartz dish. Then, (1) A 4 μL drop of the test medium containing one to nine oocytes was pipetted into the center of the washer, and a 12 mm round glass cover slip (Ted Pella No. 26023) was applied with vacuum tweezers. (The purpose of the washer was to prevent distortion of the oocyte by the cover glass.) (2) The quartz dish was then quickly placed in the Linkam sample holder, which was then inserted into the Linkam stage and a freezing run immediately initiated. Approximately 1–2 min elapsed between initiating step (1) and completing step (2).

The Linkam cryostage

A BCS 196 cryostage (Linkam Scientific Instruments, Waterfield, UK) along with a Paxcam digital CCD camera (800 × 600 resolution) and Pax-it control and capture software (v. 6.1) developed by Midwest Information Services (Franklin Park, IL) for the Linkam, and integrated by McCrone Microscopes and Accessories (Westmont, IL) were used for these experiments. The cryostage was attached to a Zeiss bright-field microscope and the oocytes observed with an Olympus 6.3× (for Stage II oocytes) or 10× (for Stage I oocytes) long working distance microscope objective. The Pax-it software permits the setting of multiple ramps in which the variables are cooling rate (up to 50 °C/min), temperature limit, holding time at desired temperatures, and warming rate. Warming and cooling are effected, respectively, by electric heating and nitrogen vapor cooling of a silver control block. The maximum capture rate of 1 image/10 s was used during critical phases of the experiment. Images, however, are observed continuously in real time at 40 frames/s on the monitor.

The quartz dish referred to above rests on the silver cooling block. (Quartz has about twice the thermal conductivity of flint glass.) During a run, the temperature output of a thermocouple imbedded near the top of the cooling block is displayed continuously to 0.1 °C. We have several internal measures indicating that the sample temperature is quite accurately reflected by the displayed temperature. The first and most precise is that 2.5 μl of water spread into a thin film between two

<table>
<thead>
<tr>
<th>Solution</th>
<th>Wt % salt</th>
<th>Wt % CPA</th>
<th>R</th>
<th>Wt% water</th>
<th>m salt</th>
<th>m CPA</th>
<th>R'</th>
<th>M CPA</th>
<th>MP (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XR0-1X</td>
<td>0.6</td>
<td>0</td>
<td>0</td>
<td>99.4</td>
<td>0.104</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.4</td>
</tr>
<tr>
<td>XR8-1X-G5</td>
<td>0.57</td>
<td>4.53</td>
<td>7.87</td>
<td>94.88</td>
<td>0.104</td>
<td>0.52</td>
<td>4.99</td>
<td>0.5</td>
<td>-1.35</td>
</tr>
<tr>
<td>XR15-1X-G8</td>
<td>0.55</td>
<td>8.1</td>
<td>14.59</td>
<td>91.34</td>
<td>0.104</td>
<td>0.96</td>
<td>9.25</td>
<td>0.9</td>
<td>-2.17</td>
</tr>
<tr>
<td>XR16-1X-G9</td>
<td>0.55</td>
<td>8.98</td>
<td>16.35</td>
<td>90.49</td>
<td>0.104</td>
<td>1.07</td>
<td>10.37</td>
<td>1</td>
<td>-2.39</td>
</tr>
<tr>
<td>XR25-1X-G13</td>
<td>0.52</td>
<td>13.34</td>
<td>25.48</td>
<td>86.28</td>
<td>0.104</td>
<td>1.68</td>
<td>16.17</td>
<td>1.5</td>
<td>-3.5</td>
</tr>
<tr>
<td>XR5-1X-EG3</td>
<td>0.58</td>
<td>3.07</td>
<td>5.25</td>
<td>96.34</td>
<td>0.104</td>
<td>0.515</td>
<td>4.95</td>
<td>0.5</td>
<td>-1.35</td>
</tr>
<tr>
<td>XR11-1X-EG6</td>
<td>0.56</td>
<td>6.13</td>
<td>10.81</td>
<td>93.3</td>
<td>0.104</td>
<td>1.059</td>
<td>10.18</td>
<td>1</td>
<td>-2.36</td>
</tr>
<tr>
<td>XR17-1X-EG9</td>
<td>0.54</td>
<td>9.16</td>
<td>16.7</td>
<td>90.28</td>
<td>0.104</td>
<td>1.636</td>
<td>15.73</td>
<td>1.5</td>
<td>-3.43</td>
</tr>
</tbody>
</table>

R is the wt% CPA/wt% salt. R' is the mole ratio CPA/salt. XR0-1X is frog Ringers solution (as described under Methods) with the concentrations expressed as NaCl equivalents. In column 1, EG, ethylene glycol; G, glycerol; m, molar concentration; M, molar concentration; MP, melting point; all solutions also contained 10 mg/L Snowmax.
12 mm cover slips is observed to melt during warming at 10 °C/min at a displayed temperature of −0.2 to 0 °C. Second, all the experiments involved an initial warming ramp of a seeded sample to a displayed ~1 °C below the melting point of the test solution. As expected, most, but not all of the ice, is observed to have melted at the upper limit. Third, since Ringers is primarily NaCl (96 mM), melting during warming is expected to begin slightly below the eutectic point of pure NaCl, which is −21.1 °C. That in fact was observed. Fourth, when 4 μl droplets of oocytes in CPA/Ringers undergo their final warming and thawing at 10 °C/min, the last traces of ice vanish at an indicated 3–3.5 °C above the computed melting point. That is in accord with our experience with calibrated thermocouples imbedded in small volumes of solution warmed at comparable rates.

Video taping

In a number of experiments, the Pax-it acquired images were supplemented with digital video recordings. These DVs permitted the acquisition of images at 0.03 s resolution (the precise scan rate being 29.97 images/s). The images were obtained by photographing a supplementary LCD monitor screen with a Sony DCR-TRV 38 digital video camera recorder. Relevant portions of the resulting tape were captured on computer using U-Led Video Studio 7 software (www.ulead.com).

Statistics

Plus/minus values in tables and figures are standard errors (standard deviations of the mean). Tests of statistical significance were carried out by a two-tailed Student’s \(t \) test and two-way ANOVA using Graph Pad’s (San Diego) Prism.

Results

Stage I and II oocytes were visually inspected for obvious signs of membrane damage under a dissecting scope before loading into the Linkam stage. After loading onto the Linkam stage, the oocytes were again visually examined to exclude those with clearly abnormal morphology or obvious signs of membrane damage such as “blebbing.”

In experiments where EG or glycerol were used, the oocytes underwent a rapid decrease in volume manifested as a slightly crumpled appearance. This was a consequence of the osmotic withdrawal of intracellular water. This was followed by a more gradual re-expansion to an extent depending on the exposure time to CPA. We return to this point later in Results.

Ramps

The typical program for examining IIF for oocytes employed 6 thermal ramps as shown in Fig. 1 and Tables 2 and 3. The lower limit for Ramp 2 was set approximately 1 °C below that predicted for extracellular freezing (Table 3). The incorporation of a warming ramp (Ramp 3) just after extracellular freezing melted most of the external ice and served three purposes: (1) as an internal control of the accuracy of the thermocouple readings. (2) It allowed the oocytes to become clearly visible so that the morphological effects of the external ice formation could be assessed. (3) The melting of the majority of external ice during Ramp 3 served to equilibrate the chemical potentials of water inside

![Fig. 1. Schematic of Linkam cryostage thermal ramp program for oocytes in 1 M EG/Ringers. Individual ramps corresponding to those in Table 2 are labelled sequentially. EIF occurs in Ramp 2 and IIF usually occurs in Ramp 5.](image-url)
Table 2
Linkam cryostage cooling and warming ramps for Xenopus oocytes in 1 M CPA

<table>
<thead>
<tr>
<th>Ramp No.</th>
<th>Rate (°C/min)</th>
<th>Limit (°C)</th>
<th>Capture interval (s)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>-5.0</td>
<td>30</td>
<td>Cooling</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-7.0</td>
<td>10</td>
<td>Cooling; EIF</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-2.8</td>
<td>10</td>
<td>Warming; partial thawing</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>-7.0</td>
<td>10</td>
<td>Cooling</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>-50.0</td>
<td>10</td>
<td>Cooling; IIF</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>+20.0</td>
<td>30</td>
<td>Warming and thawing</td>
</tr>
</tbody>
</table>

With the exception of the limit temperatures in Ramps 2–3 (see Table 3), most of the other entries were the same or similar in other concentrations of CPA.

Table 3
Limits for initial cooling in Linkam cryostage Ramp 2 and warming in Ramp 3, and observed EIF and supercooling in the various concentrations of freezing solutions

<table>
<thead>
<tr>
<th>Solution</th>
<th>M CPA</th>
<th>Ramp 2 limit (°C)</th>
<th>Observed EIF (°C)</th>
<th>Calc. MP (°C)</th>
<th>Supercooling at EIF (°C)</th>
<th>Ramp 3 limit (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XR0-1X</td>
<td>0</td>
<td>5.2</td>
<td>-3.87 ± 0.03</td>
<td>-0.4</td>
<td>-3.47</td>
<td>-0.2</td>
</tr>
<tr>
<td>XR8-1X-G5</td>
<td>0.5</td>
<td>6.0</td>
<td>-5.17 ± 0.02</td>
<td>-1.35</td>
<td>-3.82</td>
<td>-1.2</td>
</tr>
<tr>
<td>XR16-1X-G9</td>
<td>1</td>
<td>7.0</td>
<td>-6.50 ± 0.00</td>
<td>-2.39</td>
<td>-4.11</td>
<td>-1.8</td>
</tr>
<tr>
<td>XR25-1X-G13</td>
<td>1.5</td>
<td>9.0</td>
<td>-7.99 ± 0.06</td>
<td>-3.5</td>
<td>-4.49</td>
<td>-2.8</td>
</tr>
<tr>
<td>XRS-1X-EG3</td>
<td>0.5</td>
<td>6.0</td>
<td>-5.10 ± 0.03</td>
<td>-1.35</td>
<td>-3.75</td>
<td>-1.7</td>
</tr>
<tr>
<td>XRS-1X-EG6</td>
<td>1</td>
<td>7.0</td>
<td>-6.33 ± 0.09</td>
<td>-2.36</td>
<td>-3.97</td>
<td>-2.8</td>
</tr>
<tr>
<td>XRS-1X-EG9</td>
<td>1.5</td>
<td>9.0</td>
<td>-7.67 ± 0.07</td>
<td>-3.43</td>
<td>-4.24</td>
<td>-3.8</td>
</tr>
</tbody>
</table>

and outside the oocyte before cooling Ramps 4 and 5. In other words, the oocytes were minimally supercooled at this stage.

Ramps 1, 4–6 remained essentially the same for all the concentrations of glycerol and EG studied, but the limits for Ramps 2 and 3 depended on the solution as summarized in Table 3. Table 3 also depicts the mean observed temperatures of EIF, and the calculated thermodynamic melting points of the solutions. The latter were calculated as \(-1.855 \times\) the molality of the CPA minus the 0.4 °C melting point depression of isotonic Ringers. (1.855 is the so-called molal freezing point constant). The molalities of CPA are given in Table 1.

Most of the experiments used a cooling rate of 10 °C/min in Ramp 5.

Extracellular freezing

EIF occurred when the solutions were supercooled an average of 3.5 °C (Ringers), 3.8–4.5 °C (glycerol), and 3.8–4.2 °C (EG) below the thermodynamic freezing (melting) points (Table 3). The relatively small amount of supercooling was a consequence of the presence of catalytic quantities of freeze-dried ice-nucleating bacteria (Snomax).

EIF was manifested by dendritic spears of ice apparently being projected at high rate (~800 μm/s) across the field of view (Fig. 2B). Projected spears are of course illusory; rather, they are akin to the propagation of a crack in window glass. The initial spears exert no evident force on the oocytes other than a small shift or rotation of the eggs as they are displaced slightly by the developing ice phase.

Immediately thereafter, the thickening extracellular ice in Ramp 2 mostly or totally obscures the fine details of the oocytes. The obscuration was greater with increasing concentrations of CPA.

Oocyte distortion from EIF

The oocytes become visible again at the end of the transient warming in Ramp 3 when most of the external ice has melted. Examination of the Xenopus oocytes during this stage showed no apparent distortion in marked contrast to that observed for mouse oocytes [14]. Examples are shown in Fig. 2D for Xenopus oocytes.

Plasma membrane integrity was manifested by the fact that intracellular ice formation (IIF) as evidenced by “flashing” did not occur in the majority of oocytes (see next section) until well into Ramp 5 at temperatures often far below EIF. In the region between EIF and IIF, the water in the oocytes had to be supercooled and the only way for supercooled water to co-exist with surrounding ice is to be separated from that ice by an intact plasma membrane.
Fig. 2. Photomicrographs of a representative Linkam freezing experiment of two Stage I oocytes. Oocytes suspended in 4 μl of 1.5 M EG/ringers were subjected to a Linkam thermal program similar to that depicted in Fig. 1 (see Tables 2 and 3). (A) Initial oocyte observation (Ramp 1), (B) EIF (Ramp 2), (C) the high-temperature flashing of one oocyte (Ramp 2), (D) partial melting of extracellular ice (Ramp 3), (E) rapid cooling (Ramp 5), (F) low-temperature flashing of the second oocyte (Ramp 5), (G) oocytes after melting of external ice (Ramp 6), (H) oocytes at the end of Ramp 6. Temperatures are displayed in the lower right-hand corner of each individual panel.
In the case of about half the oocytes, the EIF and/or the consequent distortion did disrupt or damage the plasma membrane as evidenced by either the total lack of flashing (which we interpret as an inability to supercool) or by flashing at temperatures very close to the EIF temperature. We elaborate on these points in the next section.

High and low temperature flashing

As mentioned above, a significant number of the *Xenopus* oocytes assayed flashed close to the temperature at which EIF occurred. Fig. 2 shows two representative oocytes from a single freezing run in the Linkam cryostage with 1.5 M EG cryoprotectant. The oocyte on the left flashed at −7.7 °C, close to the EIF temperature of −7.3 °C (Figs. 2C and B). We refer to these as “high temperature flashers.” In contrast, the oocyte in the upper right-hand corner flashed at −27.8 °C (Fig. 2F) and is placed in the “low temperature flashers” category. The distribution of oocytes into these two categories becomes apparent when graphing the number of oocytes which flashed at a given temperature vs. temperature (Fig. 3). In the case of freezing runs conducted in the presence of 1.5 M EG, the biphasic distribution of oocyte flashing is clear.

The frequency distributions for the IIF of oocytes in Frog Ringers alone and in the other concentrations of CPA used is summarized in Fig. 4. An arrow shows the mean EIF for that solution.

As can be seen, the distribution tends strongly to be bimodal. In each case, one group of oocytes flashed at temperatures near the mean EIF; the other group flashed at temperatures well below EIF. Table 4 gives the fraction that fell into each category for the different solutions. For purposes of this table, we include in the high-temperature category, those that flashed less than 1.5 °C below EIF and the few that flashed above the EIF temperature during the warming phase of Ramp 3.

Note that in Figs. 3 and 4 that there are five oocytes out of the total of 114 that flashed at −38 °C or −40 °C. This is at or close to the homogeneous ice nucleation temperature for objects the size of these eggs (see Discussion).

For all subsequent data analysis, the high temperature flashing oocytes were excluded since this behavior would seem to indicate plasma membrane damage either associated with the earlier EIF ramps or with the collection and pre-freezing manipulations.

Intracellular ice formation in the low-temperature flashers

The fourth column of Table 5 summarizes the temperatures at which Stage I and II oocytes underwent IIF (freezing) as a function of the CPA present [none (i.e., Ringers only), glycerol, and EG] and its concentration (0.5–1.5 M). There is a marked decrease in the mean flashing temperature with increased CPA concentration; namely, from −11.4 °C in Ringers alone to −29.4 °C in 1.5 M glycerol/Ringers and −21.1 °C in 1.5 M EG/Ringers. Comparison of the effects of increasing concentrations of both glycerol and EG show that glycerol exerts little or no effect on depressing the flash temperature at concentrations between 0 and 1 M but a sizeable effect between 1 and 1.5 M, while EG shows an initial effect between 0 and 0.5 M concentrations and no effect between 0.5 and 1.5 M (Fig. 5). The differences in flash temperatures between 0.5 M EG and 0.5 M glycerol and between 1.5 M EG and 1.5 M glycerol are significant (p < 0.001).

IIF in Stage I vs. Stage II oocytes

Fig. 6 compares the mean flash temperatures of Stage I and II oocytes in the various media. There is no statistically significant effect of stage (p = 0.9). Hence, the data for both stages presented in Table 5 and later have been pooled.
Fig. 4. Distribution of flash temperatures of oocytes suspended in 0.5 or 1.0 M EG, 0.5, 1.0 or 1.5 M glycerol, and Frog Ringers lacking CPA. The arrows depict the mean EIF temperatures.

Table 4

<table>
<thead>
<tr>
<th>CPA</th>
<th>M CPA</th>
<th>n</th>
<th>% High flashers</th>
<th>% Low flashers</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>0</td>
<td>14</td>
<td>36</td>
<td>64</td>
</tr>
<tr>
<td>Glycerol</td>
<td>0.5</td>
<td>16</td>
<td>19</td>
<td>81</td>
</tr>
<tr>
<td>Glycerol</td>
<td>1</td>
<td>27</td>
<td>41</td>
<td>59</td>
</tr>
<tr>
<td>Glycerol</td>
<td>1.5</td>
<td>23</td>
<td>26</td>
<td>74</td>
</tr>
<tr>
<td>EG</td>
<td>0.5</td>
<td>19</td>
<td>16</td>
<td>84</td>
</tr>
<tr>
<td>EG</td>
<td>1</td>
<td>27</td>
<td>52</td>
<td>48</td>
</tr>
<tr>
<td>EG</td>
<td>1.5</td>
<td>38</td>
<td>21</td>
<td>79</td>
</tr>
</tbody>
</table>

IIF vs. CPA permeation

The movement of a permeating solute like EG or glycerol into a cell is manifested in two ways. First, the volume of the cell decreases rapidly as intracellular water is rapidly removed and then returns towards normal as the solute permeates. The second manifestation of permeation is that the concentration of CPA rises very rapidly to near the equilibrium concentration and then asymptotes slowly to the equilibrium concentration. The

Table 5

<table>
<thead>
<tr>
<th>Solution</th>
<th>CPA</th>
<th>Molarity</th>
<th>Flash temperature (°C)</th>
<th>n</th>
<th>L at flash</th>
<th>U at flash</th>
<th>R</th>
<th>R'</th>
<th>nCPA at flash</th>
<th>mCPA at flash</th>
</tr>
</thead>
<tbody>
<tr>
<td>XR0-1X</td>
<td>None</td>
<td>0</td>
<td>-11.4 ± 1.0</td>
<td>9</td>
<td>0.043 ± 0.003</td>
<td>0.037 ± 0.003</td>
<td>0</td>
<td>0</td>
<td>2.96</td>
<td>0</td>
</tr>
<tr>
<td>XR8-1X-G5</td>
<td>Glycerol</td>
<td>0.5</td>
<td>-12.2 ± 0.8</td>
<td>13</td>
<td>0.158 ± 0.006</td>
<td>0.113 ± 0.006</td>
<td>7.87</td>
<td>4.99</td>
<td>0.95</td>
<td>4.65</td>
</tr>
<tr>
<td>XR16-1X-G9</td>
<td>Glycerol</td>
<td>1</td>
<td>-15.2 ± 1.1</td>
<td>16</td>
<td>0.254 ± 0.010</td>
<td>0.177 ± 0.011</td>
<td>16.35</td>
<td>10.37</td>
<td>0.62</td>
<td>6.43</td>
</tr>
<tr>
<td>XR25-1X-G13</td>
<td>Glycerol</td>
<td>1.5</td>
<td>-29.4 ± 2.0</td>
<td>17</td>
<td>0.251 ± 0.011</td>
<td>0.140 ± 0.013</td>
<td>25.48</td>
<td>16.17</td>
<td>0.76</td>
<td>12.28</td>
</tr>
<tr>
<td>XR5-1X-EG3</td>
<td>EG</td>
<td>0.5</td>
<td>-21.0 ± 2.3</td>
<td>16</td>
<td>0.101 ± 0.002</td>
<td>0.067 ± 0.002</td>
<td>5.25</td>
<td>4.95</td>
<td>1.66</td>
<td>8.22</td>
</tr>
<tr>
<td>XR11-1X-EG6</td>
<td>EG</td>
<td>1</td>
<td>-18.7 ± 2.6</td>
<td>13</td>
<td>0.198 ± 0.003</td>
<td>0.141 ± 0.003</td>
<td>10.81</td>
<td>10.18</td>
<td>0.79</td>
<td>8.04</td>
</tr>
<tr>
<td>XR17-1X-EG9</td>
<td>EG</td>
<td>1.5</td>
<td>-21.1 ± 0.1</td>
<td>30</td>
<td>0.307 ± 0.002</td>
<td>0.233 ± 0.002</td>
<td>16.7</td>
<td>15.73</td>
<td>0.45</td>
<td>7.08</td>
</tr>
</tbody>
</table>

L is the fractional mass of the solutions that remain unfrozen; U is the fractional mass of unfrozen water. L, U, and n values were calculated for each flash temperature, averaged, and the standard deviations of the mean calculated. R is wt % CPA/wt % salts. R' is moles CPA/moles salts.

* The results of these 15 oocytes include, six that were analyzed using 0.9 M glycerol/Ringers instead of 1.0 M.
"shrink-swell" behavior is illustrated for *Xenopus* Stage II oocytes in 1.5 M EG (Fig. 7A) and 1.5 M glycerol (Fig. 7C). The second manifestation, the rapid rise in intracellular concentration, is illustrated in Figs. 7B and D. The values used to make these computations were $V_b = 0.15$; $L_p = 0.73$ μm/min/atm; $P_{EG} = 0.0012$ cm/min; $P_{gly} = 0.0003$ cm/min. To elaborate, Kleinhaus et al. [6] have measured the swelling rate of Stage I and II oocytes in hypotonic frog Ringers, and using standard water permeability equations, they determined which calculated swelling curves provided the closest match to the experimental curves using L_p (hydraulic conductivity) and V_b (non-osmotic volume of the cell) as adjustable parameters in the calculations. The best fits were obtained with $V_b = 0.15$ and $L_p = 0.73$. Edashige et al. (unpublished) have made analogous measurements on Stage V oocytes, except they obtained the value of V_b directly by extrapolating a Boyle–van’t Hoff curve to infinite solute concentration. The value they obtained, $V_b = 0.69$ is nearly 5-fold higher than Kleinhaus et al.'s and that is consistent with the much higher yolk content of the Stage V egg vs. the Stage I or II. Their value of L_p was similar to that of Kleinhaus et al. [6]. There are no measurements in the literature for the permeability of Stage I and II oocytes to EG and glycerol; consequently, we used the values reported by Edashige for Stage V; namely $P_{EG} = 0.0012$ cm/min and $P_{gly} = 0.0003$. Our rationale was that if the L_p's are the same in early and late stages, the membrane properties to EG and glycerol are probably similar.

The majority of the oocytes here were exposed to CPA for 15–60 min. Figs. 7A and B indicate that in 1.5 M EG for that time interval their volumes would have increased to 72–96% of normal and the internal EG concentration would have equilibrated. Some were exposed for times as short as 2 or 5 min. The same figures illustrate that their volumes would have been near minimum, but the internal EG concentration would be 75–97% of equilibrium. In 1.5 M glycerol (Figs. 7C and D), both the oocyte volumes and the internal concentration of glycerol would have been much lower than in EG for given exposure times because of the 4-fold lower permeability coefficient.

Experimentally, however, we see no significant difference in mean flash temperature regardless of

![Graph showing effect of CPA on oocyte flash temp](image)

Fig. 5. Effect of CPA on oocyte flash temperature. Oocyte flash temperatures vs. concentrations of glycerol (closed circles) and EG (open circles).

![Graph showing flash temperatures of Stage I vs. Stage II](image)

Fig. 6. Flash temperatures of Stage I vs. Stage II oocytes. Oocyte flash temperatures of the low flasher oocytes as measured in Ringers alone or in Ringers supplemented with CPA.
exposure time to CPA or regardless of whether the CPA was EG or glycerol.

Oocyte re-freezing

To further examine the properties of the *Xenopus* oocyte plasma membrane after IIF, we subjected four oocytes to a second set of thermal ramps identical to the first. Interestingly, it was noted that oocyte "freezing" during these repeat runs coincided with the initial EIF of Ramp 2. This is a strong indication that the IIF that occurred during the first freezing run caused some type of defect or damage in the plasma membrane which negates its normal ability to prevent IIF upon initial contact with extracellular ice.

Composition and physical characteristics of the unfrozen medium at the instant of flashing

As extracellular ice develops during cooling, water is progressively removed from the solution and transformed into ice. Cells are located in the unfrozen channels between the growing ice crystals. With lowered temperature, these channels diminish in size, and the concentration of solutes in them increases. Both the fractions that remain unfrozen at the flash temperature and the concentration of salts and CPA in those channels can be calculated from phase diagrams. Columns 6–11 of Table 5 summarize these quantities. The data for glycerol/NaCl/water and EG/NaCl/water are calculated from ternary phase relations published by Pegg.
[17] and Woods et al. [26], respectively. Pozner et al. [18] have shown that the phase relations of glycerol/physiological saline/water are essentially indistinguishable from those of glycerol/NaCl/water.

The procedure is as follows: the phase diagrams depict the freezing or melting points as a function of the total weight percent (\(W_T\)) of CPA + salt. The position of the curves (or isopleths) depends on \(R\), the weight ratio of CPA/salt. Equations published by the two groups permit one to calculate \(W_T\) for a specified \(R\) and subzero temperature. For glycerol/NaCl/water solutions, Pegg's equation is

\[
W_T = a + (a^2 - 0.04T_R)^{1/2}/0.02,
\]

where \(1/a = -1.6 - 1.27R - 0.25R^2\) and \(T_R\) is the flash temperature.

For EG, rearrangement of Woods et al.'s equation 3 yields

\[
W_T = (-b - (b^2 - 4ac)^{1/2})/2a,
\]

where:

\[
\begin{align*}
b &= -0.676 + (4.77E-03)R, \\
a &= (-7.64E-03) + (-2.75E-05)R, \\
c &= -T_R.
\end{align*}
\]

From knowledge of \(R\), \(W_T\), and \(W_T^0\), the total weight percent of CPA and salt in the solution prior to freezing (see Table 1), one can compute the values shown in Table 5. \(L\) is the weight fraction of the original solution that remains unfrozen at the specified flash temperature. It is calculated as \(W_T^0/W_T\). \(U\) is the weight fraction of the water in the unfrozen solution that remains unfrozen at a specified temperature. It is calculated from Eq. (7) of Rall et al. [20], namely

\[
U = (100 - W_T)L/(100 - W_T^0).
\]

We see from Table 5 that the unfrozen fraction of solution \((L)\) exceed those of the unfrozen fraction of water \((U)\) at a given flash temperature, because the former includes the mass or volume occupied by the CPA and salt molecules. Consequently, the differences between the two measures increase as the concentration of CPA increases Figs. 8A and B plot the values of \(L\) and \(U\), respectively.

Fig. 8. Characteristics of the solution upon oocyte flashing. (A) fractional mass of unfrozen solution \((L)\) at the moment of oocyte flashing as a function of the CPA concentration. (B) Fractional mass of the unfrozen water \((U)\) at the moment of flashing as a function of CPA concentration. (C) \(L\) at the flash temperature as a function of the flash temperature. (D) \(U\) at flash temperature as a function of the flash temperature.
at the flash temperature as a function of the CPA concentration, and Figs. 8C and D the values of L and U at the flash temperature as a function of the flash temperature. If a critical value for the unfrozen fraction were the major determinant of the flash temperature, one would expect that the values of L and U at the flash temperature would be similar irrespective of the CPA concentrations and irrespective of the flash temperatures; i.e., the plots would approximate horizontal lines. Clearly that is not the case.

The quantities \(m_s \) and \(m_{CPA} \) in Table 5 are the molalities of salt and CPA in the unfrozen solution at the flash temperature. The former is calculated from Rall et al.'s [20, Eq. (7)]; namely

\[
m_s = 1000 W_s / [58.44(100 - W_s)],
\]

where \(W_s \) is the weight of salts in solution at the flash temperature, equals \(W_T / (1 + R) \).

The \(m_{CPA} \) is \(R' \times m_s \), where \(R' \) is the mole ratio of CPA/salt. That mole ratio is assumed to remain unchanged as freezing progresses. The salts and CPA concentrate simultaneously because pure water is being pulled out of the solution and converted to ice. The molality of salts at the flash temperature varies nearly 6-fold from 0.5–3 molal. The molality of CPA at the flash temperature varies 2.6-fold from 4.6–12 molal. If \(m_s \) or \(m_{CPA} \) were the critical determinant of the flash temperature, one would expect flashing to occur at a given molality of salt or CPA. That also is not the case.

All the flash temperatures occur well above the eutectic points for the ternary system glycerol/NaCl/water. From Eqs. (5) and (6) of Pegg [17], the eutectic temperatures are −62.0 and −67.3 °C for 0.5 M glycerol and 1.0 M glycerol in isotonic saline. Theoretically, there is no liquid present below those temperatures. The eutectic point of EG/water is −51 °C [15]. We know of no data for EG/NaCl/water.

These findings and conclusions with respect to unfrozen fractions relate to the overall fraction of liquid in the sample as derived from the phase diagrams. We have no information on the microstructural distribution of that unfrozen fraction, and in particular what microstructural environment of ice and unfrozen medium a given oocyte "sees" at the instant of its flashing. On the other hand, the micro environment that a given oocyte sees with respect to the concentrations of CPA and salt should be close to the global values derived from the phase diagrams.

Point origin of flash

Videotapes were made of 13 runs. In 11 of those runs, flashing occurred in a directional manner from a single point of origin near the surface. An example of this is shown in Fig. 9. It took 40 ms from the

\(\frac{1}{100} \text{ms} \)

0 ms

7 ms

10 ms

Fig. 9. Oocyte directional flashing. Video images of a Stage 1+ oocyte in 1.5 M EG/Ringers displaying directional flashing were captured as described under Methods. The first frame where the onset of flashing becomes apparent is depicted as 0 ms, and the starting point and direction of the flashing event is indicated by an arrow. The onset of flashing occurred at −28.2 °C.
start of blackening to its completion, a propagation rate of \(\approx 200 \mu m/s \).

Manifestations of injury after thaw

Xenopus oocytes that had undergone flashing did not display gross distortion of their internal structure or their plasma membranes immediately after thawing in Ramp 6, other than some minor blebbing in some cases. However, they did manifest signs of injury in the form of an abrupt increase in volume by as much as 50% over normal by the time they had warmed to 15 or 20 °C. (Compare Figs. 2A and H). Swelling after IIF also occurs in mouse embryos [5] and oocytes (Mazur et al., unpublished).

Discussion

Lack of visible distortion at end of the warming in Ramp 3

Recall that after EIF occurs in Ramp 2, the oocytes are warmed to just below the thermodynamic melting point of the solution in Ramp 3. This melts most of the external ice and allows the oocytes to be seen clearly. In mouse, the oocytes are usually considerably distorted at this point, presumably as a consequence of being forced between the growing external ice crystals [14]. But that is not so for Stage I and II *Xenopus* oocytes in spite of their having about 3× and 5× the diameter and 27× and 125× the volume of the mouse egg. We do not know the explanation of the difference. Perhaps it is related to the fact that *Xenopus* oocytes possess a complex cortical array of microfilaments, microtubules, and intermediate filaments that confer high structural stability to the eggs [24].

High and low temperature freezers

In the Linkam observations, flashing falls into two groups. In one group, which we refer to as high-temperature flashers, it occurs within 1.5 °C of EIF; in the other group it occurs at temperatures further below EIF, usually well below. These we refer to as low-temperature flashers. The percentages in each group in the various media were summarized in Table 4. Kleinhans et al. [7] have reported a similar division into the two groups based on DSC measurements of oocytes in 1, 1.5, and 2 M EG. Pooled data for Stages I and II underlying their Fig. 5 show that 56% of oocytes in 1 M EG were high temperature freezers based on exotherms vs. our value in Table 4 of 52% based on visual flashing, and 32% of oocytes in 1.5 M EG were high temperature freezers vs. our value of 21%. One difference between their data and ours is that they show a substantially lower percentage of high temperature freezers in Stage I oocytes than in Stage II. We did not observe this difference.

This is very different behavior from the mouse egg [14]. There, high-temperature flashing is a rare event for eggs in CPA (7% of eggs in 1 and 1.5 M EG or glycerol).

What is responsible for the much higher percentages of high-temperature freezers in *Xenopus* is unknown. One possibility is that individual eggs vary in the stability of their plasma membranes to the physical or chemical forces exerted during EIF. This could either be an inherent variation, or subtle defects, or damage induced by the collection procedures (e.g., collagenase treatment), or less likely, pre-freezing manipulations. An alternative possibility, is that physical interactions between an individual oocyte and the surrounding EI varies in individual cases, perhaps because their excluded volume is much larger than in the case of the mouse. One observation that favors the latter is that of Kleinhans et al. [7] that by the time the oocytes reach the much larger Stage V and VI (∼1200 μm in diameter), over 90% fall in the high temperature group. (As we have indicated, oocytes beyond Stage II can not be visualized on the Linkam cryo stage.)

In a few cases, the high-temperature flashing occurred above the EIF temperature (See Fig. 4); i.e., during warming in Ramp 3. This we interpret as being a time effect rather than a temperature effect.

Flash temperature vs. permeation of CPA

We found no significant effect on the flash temperature of oocyte volume or intracellular CPA concentration prior to the initiation of freezing. These factors were influenced by the exposure time to CPA and by whether the CPA was EG or glycerol, the former having four times the permeability of the latter. This is similar to the findings for mouse oocytes [14].

IIF-Linkam vs. DSC

Table 6 compares the IIF temperatures observed here in terms of flashing using the Linkam with
Table 6
Flash temperatures: mouse vs. Xenopus oocytes

<table>
<thead>
<tr>
<th>M CPA Ringers or PBS base</th>
<th>Flash temperature (°C) (observed)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mouse</td>
<td>Xenopus Linkam (I and II)*</td>
<td>Xenopus DSC (I and II)*</td>
</tr>
<tr>
<td>0</td>
<td>-13.9a</td>
<td>-11.4</td>
<td>-</td>
</tr>
<tr>
<td>0.5 Gly</td>
<td>-30.8</td>
<td>-12.2</td>
<td>-</td>
</tr>
<tr>
<td>1 Gly</td>
<td>-41.3</td>
<td>-15.2</td>
<td>-</td>
</tr>
<tr>
<td>1.5 Gly</td>
<td>-29.4</td>
<td>-16.2</td>
<td>-</td>
</tr>
<tr>
<td>0.5 EG</td>
<td>-24.8</td>
<td>-21.0</td>
<td>-</td>
</tr>
<tr>
<td>1 EG</td>
<td>-37.2</td>
<td>-18.6</td>
<td>-18.7</td>
</tr>
<tr>
<td>1.5 EG</td>
<td>-40.8</td>
<td>-21.0</td>
<td>-23.0</td>
</tr>
</tbody>
</table>

a Excludes cases where IIF was less than 1.5 °C lower than EIF.
b Homogeneous nucleation temperature, based on the data of Angell [1] for water vs. volume and including the suppression by CPA.
c Rall et al. [21].

those observed by Kleinhaus et al. [7] in the same solutions in terms of exotherms in the DSC. The agreement between the two methods is excellent. The agreement provides strong evidence that intracellular flashing is indeed a manifestation of intracellular ice formation. The table also compares the Linkam data observed here in Xenopus oocytes with those observed in mouse oocytes by Mazur et al. [14], which we shall discuss shortly.

Flash temperatures in relation to homogeneous and heterogeneous nucleation

In the absence of foreign nucleating agents, water in bulk volume nucleates at -32 °C (1). This is the homogeneous nucleation temperature, T_h. T_h decreases with decreasing volume of the water sample and it decreases with a lowering of the thermodynamic melting/freezing point of the solution by the presence of solutes. The rule-of-thumb is that the nucleation temperature is decreased by $\sim 2x$ the suppression of the melting point [22]. When nucleation occurs above the homogeneous temperature, it is believed to be induced by foreign nucleating agents and is referred to as heterogeneous nucleation.

We estimate the mean volume of water in Stage I and II Xenopus oocytes to be 7×10^6 and 2.3×10^7 μm3. We have fitted Angell's data of T_h vs. water volume to be $T_h = -40.957 + 3.5743 \times X - 0.3286 \times X^2$, where X is the log of the diameter of the water drop. This equation yields a T_h of -34.3 and -34.0 °C for the volume of water in Stage I and II oocytes, or a mean T_h of -34.15 °C. If we apply Rasmussen and MacKenzie's conclusion that supercooling is suppressed twice the melting point suppression, the result is that T_h for that volume of Frog Ringers, 0.5, 1, and 1.5 M CPA-Ringers is -35.0, -37.0, -39.0, and -41.1 °C, respectively.

As mentioned in Results, five of the 114 low-temperature flashing oocytes flashed at -38 or -40 °C; that is, they underwent IIF at T_h, and therefore one can conclude they nucleated homogeneously, by which is meant they formed internal ice as a consequence of the spontaneous aggregation of sufficient water molecules to constitute a critically sized ice nucleus. The corollary is that these five oocytes contained no heterogeneous nucleators, by which is meant they contained no agents or particles capable of inducing ice nucelation. The detailed data underlying the report of Kleinhaus et al. [7] show that almost exactly the same fraction of Stage I and II oocytes frozen in 1 or 1.5 M EG exhibited exotherms in the DSC at or below -38 °C (namely, 6/130 or 5%).

All the other 109 low temperature flashers (and the other 124 oocytes in the Kleinhaus et al. [7] DSC study) underwent IIF well above T_h (Table 6), and one can conclude, therefore, that they nucleated heterogeneously. It seems to us very unlikely that the five that underwent IIF at T_h would lack any internal heterogeneous nucleators while the other 109 contained them. If one accepts that reasoning, one is lead to the conclusion that the heterogeneous nucleator for the other 109 is external ice that has penetrated into the egg interior as a consequence of the appearance of a defect in the plasma membrane during cooling.

Why would the membrane develop a defect during cooling that allows EI to penetrate? It seems unlikely that it is due to the attainment of a critically high m_e since the m_e at the mean flash temperature varies from 0.45 to 3.0 molal; i.e., 6-fold (Table 5). The flash
temperature, and hence \(m_b \) at the flash temperature, varies considerably more for individual oocytes in a given solution as depicted in Figs. 3 and 4. It seems unlikely that individual cells would inherently vary that much with respect to sensitivity to \(m_b \).

Similarly, \(U \) at the mean flash temperature varies from 0.04 to 0.23 for a given solution, also a 6-fold ratio and \(L \) varies from 0.04 to 0.31, nearly 8-fold. The variation for individual oocytes in given solutions also varies considerably.

Differences between Xenopus and mouse oocytes

Examination of Table 6 and other comparisons we have made show that there are major differences in the IIF responses of *Xenopus* and mouse oocytes; namely:

(i) While both show a decrease in IIF temperature with increase in CPA concentration, the effect is much stronger in the mouse than in *Xenopus*. Also, *Xenopus* shows a peculiar difference between EG and glycerol with respect to the range of concentrations over which there is an effect (Fig. 5). Although the difference is statistically significant \((p < 0.01) \), we have no explanation for it.

(ii) In mouse oocytes, the mean flash temperatures of oocytes in 1.0 and 1.5 M EG and glycerol approach or lie at \(T_h \). In *Xenopus* oocytes, all the mean flash temperatures lie well above \(T_h \), although as we have pointed out, five of the *Xenopus* oocytes flashed at \(T_h \).

(iii) In mouse oocytes, flashing tended to occur within a narrow range of unfrozen fractions \((U \) and \(L) \) [14]. That was not the case in *Xenopus*.

Comparison of IIF in Xenopus oocytes with that in other non-mammalian oocytes

Köseoglu et al. [8] reported for starfish oocytes and Hagedorn et al. [3] for zebrafish embryos that IIF as visualized by cryomicroscopy occurs at temperatures very close to that of EIF; i.e., they behave like *Xenopus* high-temperature flashers. On the other hand, embryos of two insect species, *Drosophila melanogaster* [16,13] and *Anopheles gambiae* [23] undergo IIF as measured by differential thermal analysis or DSC in a rather narrow range \((-27 \) to \(-34 \) °C for *Drosophila*; \(-29 \) to \(-31 \) °C for *Anopheles*). The embryos of these two insect species differ in an important way from the starfish and zebrafish; namely, the surface of the two insect eggs are covered by water-impermeable barriers. This means that their underlying plasma membranes can not come in direct contact with external ice, if present. Indeed, their intracellular freezing temperatures are nearly the same whether their surfaces are briefly dried before cooling or whether external water (and ice) is present. However, the water-impermeable barrier around the *Drosophila* egg can be removed by appropriate treatment with alkanes [9,11]. When that is done, the mean intra-embryonic freezing occurs at a considerably higher temperature than in normal intact eggs [16]; i.e., \(-18 \) °C for permeabilized eggs in insect Ringers vs. \(-28 \) °C in intact eggs. When permeabilized eggs are frozen in 1 M EG at 16 °C/ min, the IIF temperature again drops to \(-28 \) °C. The nucleation temperatures are somewhat lower than those reported here for the low-temperature *Xenopus* flashers (Tables 5 and 6).

Conclusions

We have indicated a number of factors that do not correlate with the IIF temperatures of Stage I and II *Xenopus* oocytes. What then is the determining factor(s)? There are a number of possibilities:

1. The plasma membranes of individual oocytes could differ in their stability when faced with the several events occurring during cooling.

2. Our assumption that none of the oocytes contain heterogeneous nucleators (an assumption based on the fact that 5 out of 114 do not) could be in error. Perhaps most oocytes do contain nucleators of varying effectiveness.

3. If our conclusion that extracellular ice is the nucleator of intracellular ice correct, the ability of EI to induce defects in the plasma membrane and pass through it may depend on the intimacy of contact between the EI and the surface of a given oocyte. The local degree of intimacy may vary more than is reflected by the values of \(U \) and \(L \), which are global quantities derived from the phase diagrams. It is important to note, that only a single defect of appropriate size would be required to provide a pathway for EI into the cell interior. In this regard, it is interesting that in a great majority of cases in *Xenopus*, flashing originated from a point source near the cell surface.
(4) Somewhat related to 3, above is that the intracellular ice nucleation temperature of a cell may be at least partly related to the size of the cell, perhaps because a larger cell distorts the extracellular ice lattice more than does a smaller cell. The only evidence we have that cell size may matter is (a) Kleinhans et al.’s [7] finding from DSC measurements that Stage V and VI oocytes undergo IIF at much higher temperatures than the much smaller Stage I and II oocytes, and (b) the fact that Stage I and II Xenopus oocytes undergo IIF at considerably higher temperatures than the still much smaller mouse oocyte. Of course with respect to (a), the development from Stage II to V involves more than just an increase in size of the egg. For example, yolk formation begins at Stage III and an increasing proportion of the cytoplasm is converted to yolk by Stages V and VI so that by these stages, the yolk occupies 80–90% of the cytoplasm (R.A. Wallace, personal communication; [25]).

References

